COURSE CODE:	CE-356		
COURSE NAME:	Engineering Hydrology		
CREDIT HOURS:	Theory = 3 Practical = 1 Total = 4		
CONTACT HOURS:	Theory = 48 Practical = 16 Total = 54		
PREREQUISITE:	None		
MODE OF TEACHING:	Three hours of lecture per week		
	Two hours of Lab work per week		

COURSE DESCRIPTION:

This course focuses on basics of surface and groundwater hydrology, occurrence and measurement of precipitation, evapotranspiration, infiltration, stream flow, hydrology of extreme events and hydrological aspects of water quality.

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

 \checkmark

 \square

 $\mathbf{\Lambda}$

 \square

- 1 Engineering Knowledge:
- 2 Problem Analysis:
- 3 Design/Development of Solutions: ☑
- 4 Investigation:
- 5 Modern Tool Usage:
- 6 The Engineer and Society:

7	Environment and Sustainability:	
8	Ethics:	
9	Individual and Teamwork:	
10	Communication:	
11	Project Management:	
12	Lifelong Learning:	

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student will demonstrate competency by being able to:

Sr. No.	CLO	Domain	Taxonomy Level	PLO
1	Explain components of hydrological cycle in relation to environmental engineering	Cognitive	2	1
2	Apply models for precipitation, evapotranspiration, infiltration, surface, and ground water flow	Cognitive	3	3

3	Analyse and generate unit hydrograph for a watershed and flood routing.	Cognitive	4	3
4	Practice response of processes involved in Precipitation, infiltration, surface, and ground water flow in lab conditions.	Psychomotor	3	4
5	Maintain ethical conduct in lab and adhere to lab safety procedures while contributing effectively towards individual and/ or group goals.	Affective	5	9

TOPICS COVERED:

Week	Topic Covered	Reading Assignment/ Homework	CLO #
	Introduction to Hydrology Introduction, Origins and evaluation of Scientific Hydrology, Major Aspects of Hydrology, Hydrology for Environmental Engineers	Chapter 1	1
	Introduction to Hydrology Residence Time, The Hydrologic Cycle, Hydrologic Systems, Physical Laws of Application in Hydrology, Concept of Watershed, Water Budget Equation	Chapter 1 Quiz 1 Assignment 1	1
	Precipitation Forms, Occurrence, Types, Measurement of Precipitation, Rain Gauge Network, Estimation of Missing Precipitation Data, Consistency of Precipitation Data, Temporal and Spatial Variation of Precipitation, IDF Curves, PMP	Chapter 2 Assignment 2 Quiz 2	2
	Evapotranspiration introductions, factors affecting, models involved, modelling of ET	Chapter 3 Assignment 3 Quiz 3	2
	Infiltration introduction, soil properties, Darcy's Law, Horton and Holton's model of Infiltration, Holtan's Model, Actual infiltration rate with losses, Φ Index Approach, Double Ring Method	Chapter 4 Quiz 4	2
9	Mid Semester Exam		

10	Groundwater hydrology introduction, aquifers, Permeability, Hydraulic Conductivity, Transmissivity, Storage Coefficient, Exploitation of Groundwater, flow in well under different conditions	Chapter 5 Assignment 4	2
11- 12	Streamflow, Mechanisms of Runoff Generation, Classification of streams, Stream Flow Measurement, Hydrographs, Unit hydrograph, stream flow forecasting	Chapter 6 Quiz 5	2, 3
13- 14	Hydrology of extreme events, Flood wave Propagation, Flood Routing	Chapter 7 Assignment 5 Quiz 6	2,3
17	Hydrology aspect of water quality, Measures of water quality	Chapter 8	1,2
18	End Semester Exam		

LIST OF PRACTICALS:

Not Applicable

Sr.	Practical	CLO
No.		
1	Investigating rainfall-runoff relation of a Long Duration Rainstorm on Dry Catchment.	4
2	Investigating rainfall-runoff relation of a Short Duration Rainstorm on Dry Catchment.	
3	Investigating rainfall-runoff relation of a Long Duration Rainstorm on Wet Catchment.	4
4	Investigating rainfall-runoff relation of a Short Duration Rainstorm on Wet Catchment.	4
5	Investigation of Infiltration rate of soil in field with ring infiltrometer.	4
7-8	Investigation of Flow of ground water in unconfined aquifer.	4
9	Investigating rainfall-runoff relation of a Long Duration Rainstorm on Impermeable Catchment.	4
10	Investigating rainfall-runoff relation of a Short Duration Rainstorm on Impermeable Catchment.	4

11	Investigating rainfall-runoff relation of a Long Duration Rainstorm on	
11	Catchment with Slope.	
13-	Investigating rainfall-runoff relation of a Short Duration Rainstorm on	4
14	Catchment with Slope.	
15-	Investigating rainfall-runoff relation of multiple simulated moving storms.	4
16	investigating rainali-runon relation of multiple simulated moving storms.	

TEXT AND MATERIAL:

Textbook (s)

Hydrology for Engineers, Geologists and Environmental Professionals (2010 Edition) by Sergio E. Serrano

References Material:

Applied Hydrology by V.T. Chow, D.R. Maidment and L.W. Mays, McGraw-Hill, (Latest Edition).

Engineering Hydrology by A.R. Ghuman, Nastaleeq Publishers, Rawalpindi.

ASSESSMENT SYSTEM:

Theoretical/Instruction	75%	
Assignments	10%	
Quizzes	15%	
Mid Semester Exam	30%	
End Semester Exam	45%	
Practical Work	25%	
Lab Attendance	00%	
Lab Report	40%	
Lab Quiz	30%	
Lab Rubrics	30%	